ニュース News

「Tech_PCB」の記事

【量産採用事例】株式会社ザクティ様に量産採用をいただきました。

株式会社ザクティ様に量産採用をいただきました。 ご採用いただいた部位は、 ・重機取付型セーフティカメラシステム【ドボレコ®JK】 ・小型重機取付型セーフティカメラシステム【ドボレコ®S】 ・フォークリフト取付型セーフティカメラシステム【フォクレコ】 のカメラ部になります。

【動画紹介】P-Flex® 製造工程の紹介

エレファンテック独自製法によるプリント基板P-Flex® の製造工程動画(2024年1月版)ができました。 プリント基板P-Flex 製造工程の紹介(2:15)

技術に関するよくある質問への回答(FAQ)

弊社社長清水がXに、技術に関するよくある質問への回答(FAQ)を投稿しました。 こちらの内容について、改めてご紹介したいと思います。 そもそもどういう技術? 基材に銅ナノ粒子インクをインクジェット印刷したあと、乾燥・焼結し、めっきで銅膜を成長させることで、配線を形成する技術です。それにより、既存のPCB製造の標準技術であるサブトラクティブ法(銅箔の不要な部分をエッチングする方法)に比べて、大幅に省材料化が可能となります。 ▶ 金属インクジェット印刷技術で、製品性能は変わらず環境負荷を大幅に削減 印刷って昔からあるよね?例えばスクリーン印刷配線や回路3Dプリンターとの違いは? その通りで、印刷配線自体は昔からあります。(「銀ペースト スクリーン印刷」などで検索するとたくさんでてきます。) 最大の違いは、通常の印刷配線が印刷のみで配線を形成するのに対して、弊社技術は印刷とめっきを組み合わせたハイブリッド法だという点です。それによる最大の違いは抵抗値(電気の通りにくさ)です。次の項目でも記載しますが、印刷だけで通常の配線と同等の体積抵抗率を実現することは不可能です。そのため、これまでの印刷配 […]

【P-Flex® を使うメリット】フレキシブル基板でMEMSマイクの周波数特性をあげる

MEMSマイクにP-Flex®を活用するメリットについて MEMSマイクは小型で大量生産に向いていることからスマートフォンを始め各種機器に採用されています。その形状の多くは表面実装タイプでPCBに実装されます。 トップポート型とボトムポート型 MEMSマイクには音を取り込むためにケースに小さな穴が開けられています。トップカバー側に穴がある場合はトップポート型、PCB側にある場合はボトムポート型と呼ばれています。こちらの図はCirrus Logic社のアプリケーションレポートに掲載されているMEMSマイクの断面図です。(左:トップポート型、右:ボトムポート型) https://www.mouser.com/catalog/additional/Cirrus Logic_WAN0284_v1.1.pdf 薄く形状自由度が高いP-Flex®を使う2つのメリット サウンドのパフォーマンスを最大化するためには音を取り込む部分のケース、ガスケット(*)、保護用メッシュ層の厚さを薄くすると良いとされています。ボトムポート型では基板越しに音を取り込むため、更にPCBの厚さも影響を及ぼします。サウンド入 […]

【インタビュー】キラーサンプルのご紹介

エレファンテックの FPC P-Flex® の新しいサンプル基板について、弊社P-Flex®営業部の上野のインタビューをご紹介します。

インピーダンス

P-Flex® PIで柔軟性を持った特性インピーダンスコントロールFPCを作ってみました。

特性インピーダンスコントロールとは 基板上の信号線に高速信号が流れる際、インピーダンス(交流抵抗)が変化するところで反射が発生し、信号の波形が乱れます。それによって製品に誤作動が生じたり、そもそも動作しないなどのトラブルを引き起こす原因となります。 反射を発生させない為にはインピーダンスを一定に保つ必要があるのですが、一定に保つ事を特性インピーダンスコントロールと呼び、基板では配線幅と絶縁層の厚みのコントロールで制御しています。回路の出力インピーダンスと次へ受ける側の入力インピーダンスを一致させることにより、より効率的にロスなく信号伝送することができます。 通常の特性インピーダンスコントロールFPCは柔軟性に欠ける FPCで特性インピーダンスコントロールが必要な場合、MSL(マイクロストリップライン)と呼ばれる配線方法での計測、インピーダンスマッチングが主流になっております。 しかし、MSLではGND確保の為にベタの銅箔面積が大きくなる設計となり、一般的なFPCで使われる18µm or 35µmの銅箔をGNDとして使用しますと、FPCの柔軟性が損なわれるという課 […]

【P-Flex®を使うメリット】フレキシブル基板P-Flex®で温度センサーIC・サーミスタの熱応答時間を速める

温度センサー・サーミスタの熱応答時間を速めるメリット 温度センサーにおいて、熱応答性が高い(温度変化をより短時間で検知できる)ことは、温度変化をトリガーとして制御を行う機器にとって、その分早くコントロールできるため多くのメリットがあります。エアコンを例にとって考えてみるとイメージしやすいかもしれません。 ・使用エネルギーを少なくすることができ環境に優しい ・コスト(電気代)の削減に繋がる ・快適性が向上する 熱応答性(熱応答時間)を高めるために、サーマル・マス/ 熱容量に注目 ・温度センサーの熱応答速度は、センサーを取り巻く熱容量(材料が熱エネルギーを蓄える能力)が大きく影響する・センサーの周辺に熱容量の高いものがあると熱応答時間がかかる・高い熱容量を持つ材料の方が、熱容量が小さいものよりも温度変化に対する反応が遅くなる(例えば断熱材など) また、温度センサーの多くは表面実装PKGで供給されることが多いので、ICは基板に実装して使用する必要があります。実装するための基板は熱容量が小さいことが求められます。 フレキシブル基板を使うメリット (メリット1)薄いフレキシブル基板は、熱容量が小 […]

無電解銅めっき

P-Flex® 製造における 無電解銅めっき について (2021/01/10更新)

なぜ無電解めっきか エレファンテックではピュアアディティブ®法を実現するための方法として銀インクをシードとして、その上から無電解銅めっきをする手法を採用しています。 一般に、銅めっきでよく利用されているのは電解銅めっきです。この手法は外部からの電力によって銅を還元する(Cu2+ → Cu)することで銅膜を形成するので、めっきの安定性に優れており幅広く利用されています。しかしながら、電解銅めっきではめっきしたいパターンを通電させる必要があるため、他の配線とは繋がっていない独立したパターンには通電することができずめっきが付かないため、利用することができません。 一方で、無電解銅めっきは浴中の化学物質(還元剤:ホルムアルデヒドが使用されることが多い)が銅を還元するため、通電できないパターン上にも銅膜を形成させることが出来ます。また、成長速度が還元反応の速度によって決まるので、還元剤が浴内にほぼ均一に分布しているとみなせる場合、膜厚のムラが出来にくいという利点もあり、フレキシブル基板をピュアアディティブ®法によって作成するのに最適な方法であるといえます。 実際、銀シード層パターン上に無電解銅め […]

フレキシブル基板

【フレキシブル基板にチャレンジ!】浸水センサー編[3]:フレキシブル基板でセンサーを作ろう

【フレキシブル基板にチャレンジ】シリーズ とは エレファンテック技術ブログ新企画、東工大の学生が初めてフレキシブル基板を使って、実際に電子工作する試行錯誤のレポートをお届けしています。 これまでもいろいろなシリーズを展開してきましたが、新シリーズとして浸水センサー編がスタートしました。ご期待ください。 挨拶 こんにちは、平野です。お久しぶりです。このシリーズでは、p-flexを用いて簡単な浸水センサーを制作しています。 前回↓ 【フレキシブル基板にチャレンジ!】浸水センサー編[2]:フレキシブル基板でセンサーを作ろう 前回までのあらすじ 厳重な防水が必要な水中ロボットに搭載できる、浸水を検知するためのセンサーを作りたい!というモチベーションでこの企画は始まったのでした。 (紹介:東京工業大学ロボット技術研究会-アクア研) ここまでの記事では、フレキシブル基板を使えば狭い場所や曲がった接合箇所にもセンサーを這わせることが出来て便利そう!ということで試作品の製作を行っていました。 前回は、浸水しているか否かに応じてデジタル信号を返す回路(と行っても本当に簡単なものです)を組み込んだ新しい基 […]

【フレキシブル基板にチャレンジ!】浸水センサー編[1]:フレキシブル基板でセンサーを作ろう

【フレキシブル基板にチャレンジ】シリーズ とは エレファンテック技術ブログ新企画、東工大の学生が初めてフレキシブル基板を使って、実際に電子工作する試行錯誤のレポートをお届けしています。 これまでもいろいろなシリーズを展開してきましたが、新シリーズとして浸水センサー編がスタートしました。ご期待ください。 挨拶 こんにちは、平野です。 このシリーズでは、浸水センサー編と銘打ってフレキシブル基板で浸水センサーを作っていきます。 今回は初回ということで、とりあえず試作品第一号の設計をします。 経緯説明とか 東工大ロボット技術研究会には、水中ロボコンに取り組んでいるアクア研というグループがあります。 キャッチコピーは“水はともだち” ↓は最新の活動報告。ぜひ覗いてみてください(身内の宣伝)   ことの発端は、そのアクア研のボスとの会話でした。 ボス「いいかんじの浸水センサーほしい」 ぼく「フレキシブル基板ちょうどいいんじゃね?」 そう、実はP-Flex®には水に濡らしてもいいような製造オプションがあり、フレキシブル基板なのでどんなところにも設置しやすく浸 […]

【フレキシブル基板にチャレンジ!】地球儀編[4]:基板到着

【フレキシブル基板にチャレンジ!】地球儀編[4]:基板到着

【フレキシブル基板にチャレンジ】シリーズ とは エレファンテック技術ブログ新企画、東工大の学生が初めてフレキシブル基板を使って、実際に電子工作する試行錯誤のレポートをお届けします。 新シリーズとして地球儀編のスタートです。今後ともよろしくお願いします! ご挨拶 高橋です。 今回は頼んでいた地図の基板が完成したため、それを使って色々遊んでみることにします。   威容   補強板を貼って、土台に差し込んで立たせてみました。もう完成では? 円柱にしてたら補強板の枚数も多くしなきゃいけなくて位置合わせも大変だったんだろうな…六角形は正義。 ところで、この部分よく見るとアメリカ大陸になってます。   LED実装への道 このアメリカ大陸だけでLEDが169個あります。注射器でクリームはんだを盛り盛りしていては日が暮れても終わらないので当然のごとくステンシルを使います。 ところでelecrowではステンシルが発注できるのですが、お値段が16ドル。高いわけではないですが決して安くなく、そして今回は量産するわけでもないのでもう少し安く早く手軽に手に入らないものか…と。 &n […]

【フレキシブル基板にチャレンジ!】地球儀編[3]:試作

【フレキシブル基板にチャレンジ】シリーズ とは エレファンテック技術ブログ新企画、東工大の学生が初めてフレキシブル基板を使って、実際に電子工作する試行錯誤のレポートをお届けします。 新シリーズとして地球儀編のスタートです。今後ともよろしくお願いします! ご挨拶 ご無沙汰しております。高橋です。今回は2Dプリンタと3Dプリンタで地球儀を試作してみたいと思います。 前回の記事で、張り合わせて押さえつける接続がうまく行くのかどうかチェックしました。どうやら大丈夫そうだったので今回は実際にフレキシブル基板を発注……の前に。 フレキシブル基板をいきなり発注しても時間がかかる上に失敗したら目も当てられないので、今回はとりあえず紙で印刷してみてスペースや曲げ半径などに無理が無いかどうかをチェックする、という目論見です。 P-Flex®は今回登場しません。   作ってみた 先日考えなしにとりあえず発注したリジッド基板が届きました。 これは電流増幅基板です。これらの上にマイコンの乗った制御基板を刺すのですが、増幅基板は同じ構造の3枚の基板を向きを変えて重ねること […]

ロボットアーム

【フレキシブル基板にチャレンジ!】ロボットアーム編[5]:機体設計リベンジ

【フレキシブル基板にチャレンジ】シリーズ とは エレファンテック技術ブログ新企画、東工大の学生が初めてフレキシブル基板を使って、実際に電子工作する試行錯誤のレポートをお届けします。 電卓編の次のシリーズとして新たにロボットアーム編のスタートです。引き続きよろしくお願いします!  << 前の記事 次の記事 >>  挨拶 こんにちは、高橋です。 今回は機体設計リベンジ編です。ところでrevengeっていうのは私怨による報復行動らしいですね。   前回のあらすじ 前回はフレキシブル基板をバネのように曲げてみたのですが、曲げ耐久が保証できないのでこの曲げ方式は使えないことに。 よって別の曲げ方式を採用することになり、応じてロボットアーム自体も設計が変更になりました。 あと今まで何個か危うい点があったのでその辺をまとめて修正。   サーボ新調 以前の機体で何故ギアを使っているのか疑問に思った方もいたのではないでしょうか。記事の方では一切触れずに進めてきましたが… その理由は、採用していたサーボモーターSG90のトルク不足です。ただこれは決してSG90が […]

ERATO 川原万有情報網プロジェクト:Future of Intelligent Material 展 -電子デバイスの未来のカタチ-

ERATO 川原万有情報網プロジェクト:Future of Intelligent Material 展 -電子デバイスの未来のカタチ-

2018年11月27日 WeWork ギンザシックス にて Future of Intelligent Material 展 -電子デバイスの未来のカタチ- を開催いたしました。 このイベントでは新しい回路素材の展示や、それから生まれるデザインについてのプレゼンテーションを行い、”電子機器のデザインが変わる可能性” を実際に体験して頂きました。 ERATO 川原万有情報網プロジェクトの作品 ERATO 川原万有情報網プロジェクトの作品のうち Elephantech が関わらせて頂いた作品の展示と紹介をしていただきました。 『折り紙ロボット(180度折)』『くねくねロボット(ひらむしロボット)』などの、フレキシブル基板 P-Flex® を利用したERATO 川原 万有情報網 プロジェクトによる「Origami Robots with Flexible Circuit Sheets」と題した研究デモ発表は、シンガポールで開催されたACM UbiComp 2018において Best Demo Award を受賞しました。 ▶ P-Flex® を利用した「Ori […]

フレキシブル基板 きゅんくん作:オリジナル作品「光るチョーカー」

【P-Flex® 制作事例】光るチョーカー – 制作&解説:きゅんくん

「ロボティクスファッション」をキーワードに活動するクリエイターのきゅんくん。これまでも、ロボットアームを着る「メカフ」など、近未来を感じさせるさまざまなウェアラブルファッションを発表している。そんな彼女にフレキシブル基板を使った、オリジナル作品「光るチョーカー」を作ってもらった。その制作の過程を自身の解説で公開!

【フレキシブル基板にチャレンジ!】ロボットアーム編[2]:機体設計

【フレキシブル基板にチャレンジ】シリーズ とは エレファンテック技術ブログ新企画、東工大の学生が初めてフレキシブル基板を使って、実際に電子工作する試行錯誤のレポートをお届けします。 電卓編の次のシリーズとして新たにロボットアーム編のスタートです。引き続きよろしくお願いします!  << 前の記事 次の記事 >>  挨拶 こんにちは。高橋です。 今回はロボットアームの設計についての話です。ぶっちゃけこの記事丸ごと基板関係ねえんじゃねえの、と思う方もできれば踏み止まっていただきたいです。 構造について 前回の記事で述べた通り、今回は垂直多関節ロボットを作ります。 垂直多関節ロボットとは多関節ロボットの構造の一種です。 ロボットアームと聞いてまず思い浮かべるような形状ですね。 △こういうの 設計の上で地味に面倒だったのが歯車の設計ですね。 設計にはAutodesk社のinventorという3DCADを使っているのですが、inventor君の歯車設計ツールがこれまた非常に使いづらく… そもそも歯車の設計は初めてだったのでそこでも手古摺ったのですが、それ以上にinvento […]

【フレキシブル基板にチャレンジ!】ロボットアーム編[1]:導入

【フレキシブル基板にチャレンジ】シリーズ とは エレファンテック技術ブログ新企画、東工大の学生が初めてフレキシブル基板を使って、実際に電子工作する試行錯誤のレポートをお届けします。 電卓編の次のシリーズとして新たにロボットアーム編のスタートです。引き続きよろしくお願いします!  << 前の記事 次の記事 >>  挨拶 こんにちは。高橋です。 電卓の製作も無事終わり、ようやくこの【フレキシブル基板にチャレンジ!】シリーズ二つ目の製作物に移行できます。 こんなに時間をかけてしまって各方面の皆さんに申し訳ない気持ちでいっぱいでございますが、この無力感を次のものにぶつけて加速できたらいいなと思う所存です。 次に作るもの モノづくりの一つの終着点。男子の憧れ。それがロボット(要出典)。 でもヒューマノイドは流石に無理なのでロボットアーム作れたらいいよね、というぼんやりとしたイメージは前からありました。 ただ、あくまでこの記事はフレキシブル基板のことを身近に感じてもらうことが目的なので、フレキシブル基板をロボットアームの何処かに活かせないかと苦悶していたところ。 社員のAさ […]

【フレキシブル基板にチャレンジ!】ノートPC分解号[2]

~前回のあらすじ~ ラップトップにはFFCが少ししかなかったけど、CDドライブにFPCがありそうだったよ!! ▶ 【フレキシブル基板にチャレンジ!】ノートPC分解編[1] ~回想終了~   高橋です。 前回に引き続き、今度はCDドライブをバラバラにしていきます。     分解の前に……CDドライブの構造 CDは元を辿ればレコードに端を発する「回転させて情報を読み書きする記録媒体」の一種です。 僕のPCに装備されていたこれはCD・DVDドライブですが、最近ではBDドライブが標準ですね。といっても、PCでは薄さと軽さが求められ、また端末上でのコンテンツの購入・ダウンロードが普及したおかげかドライブ標準装備のノートPCは最近めっきり見なくなりましたが… ともかく、CDドライブの仕組みです。 CDドライブではレコードと同様CDを回転させ、レコードプレイヤーではピックアップに相当する”キャリッジ”を螺旋に合わせて移動させながらキャリッジにあるレーザー発振器と光センサーでCD表面の状態を読み取ります。 赤い矢印で差されている部品がキャリッジです。青いレンズが見えますね […]

パソコン分解

【フレキシブル基板にチャレンジ!】ノートPC分解編[1]

こんにちは。高橋です。 今回はこのPCを分解したいと思います!(Youtuber風)  ThinkPad E440 (7万円ほど)。故障済み。     分解のワケ そもそも、現状フレキシブル基板を使うのは主にメーカーの方々です。個人製作で手を出すにはやはり少々コストがかさみ、またそこまでしてFPCに手を出す理由があまりないからです。 フレキシブル基板の一番のメリットはやはりその薄さと曲げられるということで、即ち省スペースであるという点です。それが活きるのは当然薄い、または小さいことを求められる製品であるわけです。 であれば、そういった製品を分解すれば中からフレキシブル基板がゴロゴロ出てくるのではないか…? という思い付きが元で、高橋が廃棄しかけていた壊れかけのノートPCを分解しようという話になったのです。   執刀開始 詳しい分解手順はネット上に取説があるのでそちらを参照して頂き、要所要所を見ていきたいと思います。   まずキーボードを外します。 早速フレキシブル基板っぽいのが。 それも当然、ノートパソコンのキーボードにはフレキシブル基板の亜種で […]

フレキシブル基板のセンサーモジュール化

フレキシブル基板のセンサーモジュール化

フレキシブル基板のセンサーモジュール化は、ハーネス・基板一体設計で、管理コストや調達コストを抑えることができるだけでなく、不良の原因や誤配線を減らし信頼性向上を図ることができます。 例えば、同じものを「リジッド基板+ハーネス」と「FPCP-Flex® 」で作った場合を比較すると、見た目にも配線がシンプルになっているのがわかります。具体的には 重量低減 12g → 1g 図面低減 4枚 → 1枚 部品点数低減 25個 → 14個 センサーモジュール化したフレキシブル基板サンプル エレファンテックでは、実際に品質や基板設計イメージをご確認頂くために、センサーモジュール化したフレキシブル基板(FPC)を、ご紹介しています。 Molex社製0.8mmピッチ基板対基板コネクタ104249-0810でメインボードに接続する仕様に対応しています。 [実装内容] Vishay社製UVA&UVB光センサVEML6075とTexas Instruments社製温度センサTMP116をそれぞれI2Cバスで接続し、Molex社製0.8mmピッチ基板対基板コネクタ104249-0810でメイン […]

  • Tag

  • アーカイブ

  • SNS

    • X
    • Facebook
    • Instragram
    • LinkdIn
    • Youtube

    最新のおすすめ情報や更新情報を
    お届けしております。